
GEO-INSTRUMENTATION in 2010

Specifying Performance

Scottie L. Barrentine, P.E.

slbarrentine@terracon.com

(14) (474)

680

BARBARA EDEN - CHATTANOOGA CHOO CHOO GEORGE KENNEDY MELISSA SUE ANDERSON ... JOE NAMATH

45

Houston

AND AND ADDRESS AN

10

Louisiana

Project Resume

AVAIVAVAVAVAVA

General Reasons for Utilizing Geo-Instrumentation

- Verification of Design Parameters
- Monitoring of Performance Construction and Long Term
- Improved Designs Lower Project Cost
- Risk Management
- Many More!!!!!!

The Attention Getters

21MIG

What Structures Benefit from Instrumentation Monitoring?

- Dams, Levees, Canals
- Embankments
- ➢ Bridges
- Slopes and Retaining Walls
- > Buildings
- ➤Tunnels, Mines

≻Etc.....

According to the Lawyers

"If you undertake any complex undertaking, you need a plan of action, you need execution and you need monitoring to see if you are achieving your goals"

- McKenna Long & Aldridge, LLP TVA Kingston Spill

The Effect

Many owners and engineers have realized the benefits of instrumentation systems for short term and long term monitoring of performance in civil projects.

The Problem

Design engineers often utilize older specifications and plan details or do not fully understand the instrumentation system components. Specifications often mix NEW technologies with OLD execution methodologies.

BewARE of Cu^T & p A St s p E cs

What's the Harm?

- Less than Desired Performance
- Improper Installation
- Increased Project Cost
- Change Orders

Let's Look Some Examples

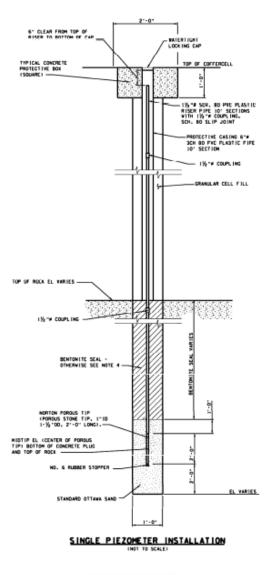
Piezometers

- > Inclinometers
- Drilling Methods
- Surface Completions
- Data Acquisition Systems

Piezometers

	Standpipe	Pneumatic	Vibrating Wire
Response	Slow	Fast	Fast
Accuracy	High	Medium	High
Repeatable Readings	Need Technique	Need Patience	Easy
Obtain Readings Remotely	No	Yes	Yes
Connect to Data Logger	No	No	Yes
Potential for Lighting Damage	No	No	Yes
Main Expense	Drilling Borehole	Drilling Borehole	Drilling Borehole

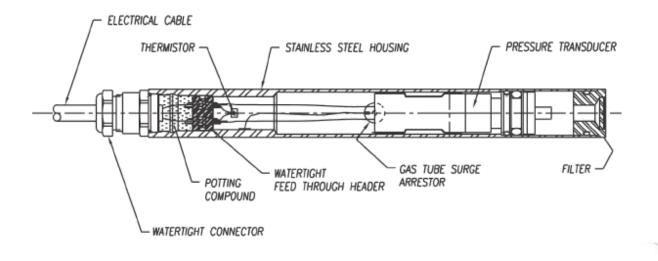
VERY Different Installation Methods


Piezometer Response Times Forgotten Mathematics! All about Volumes!

Standpipe - Generally requires significant change in volume to indicate changes in pressure

Vibrating Wire - Requires very, very, very small change in volume to indicate change in pressure.

Standpipe Piezometers

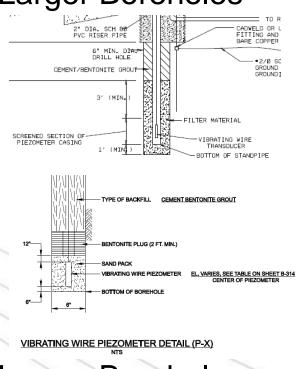


Hvorslev - Sizable Intake Zone and Small Riser to Reduce Lag Time.

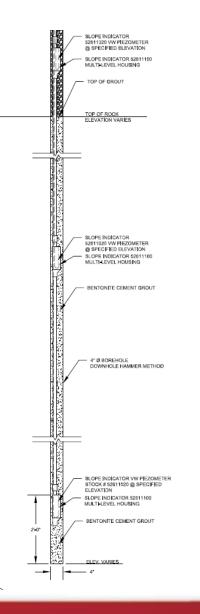
Required Volume Change per 1' head Pressure Change 2" Riser = 617 cm^3 1" Riser = 154 cm^3 $\frac{3}{4}$ " Riser = 87 cm^3

Vibrating Wire Piezometers

Typical Required Volume Change per 1' head Pressure Change VW = .01 to .001 cm³

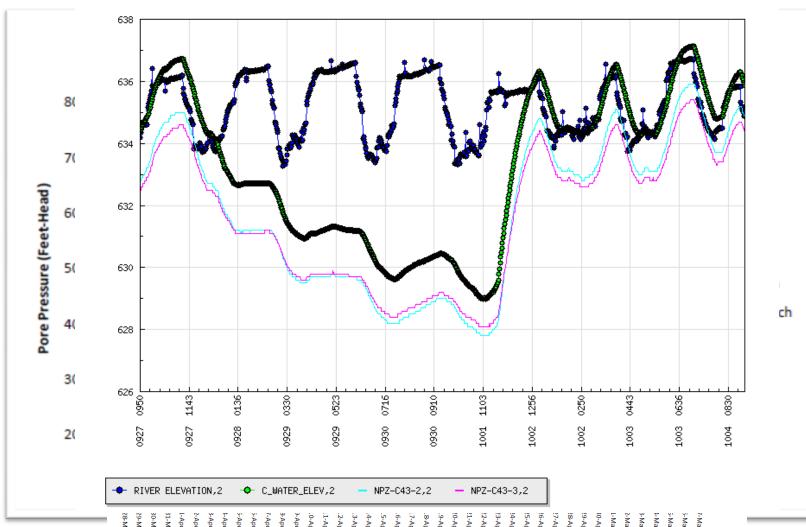

VW Install Methods

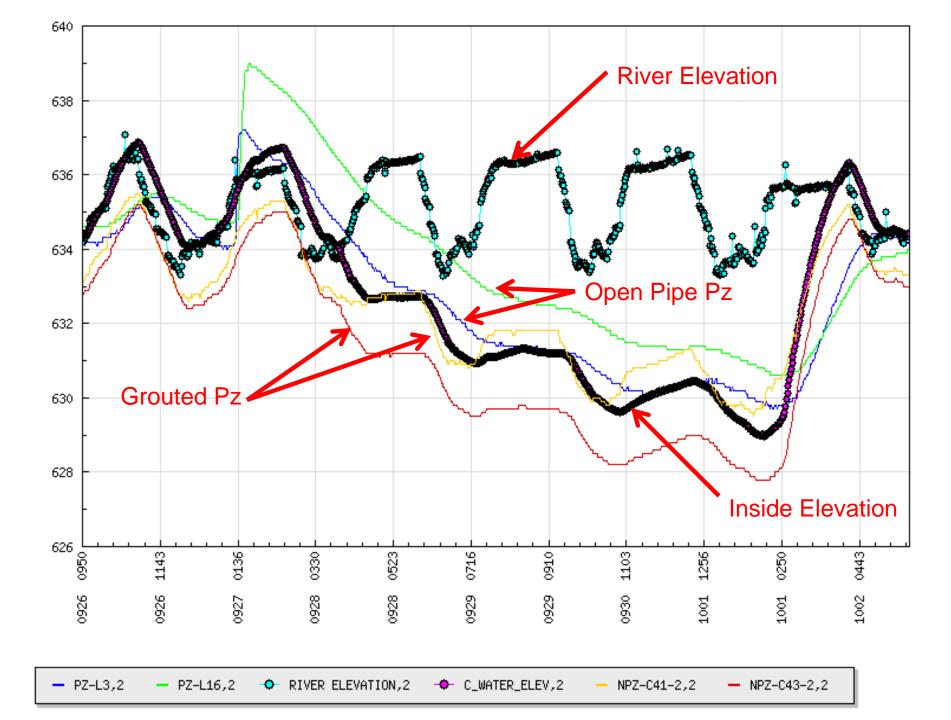
Inside Open Standpipe

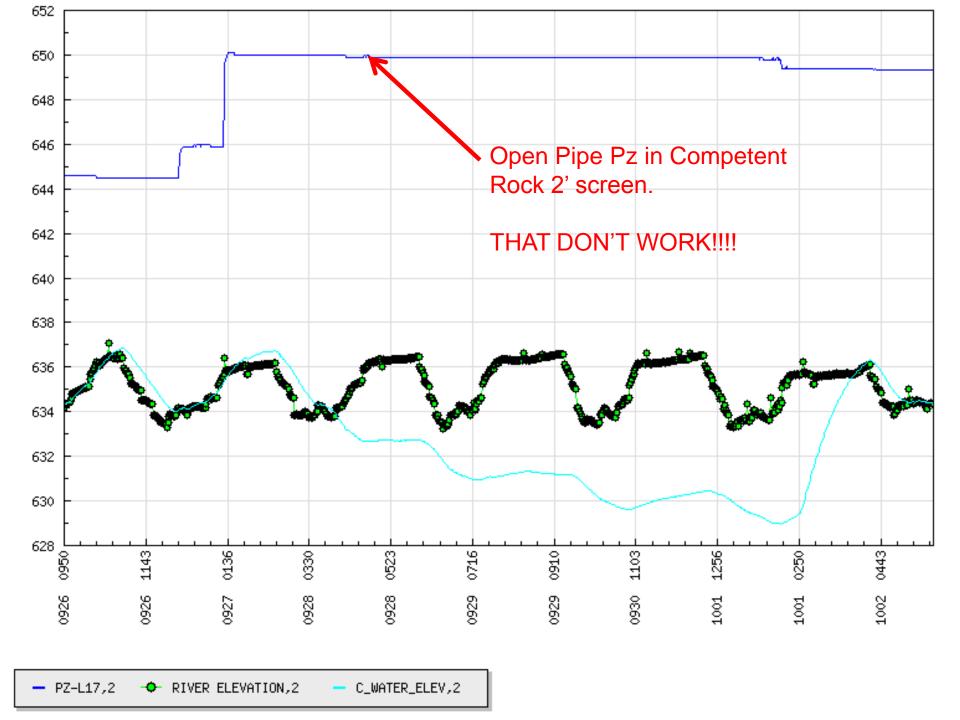

- Increases Response Times
- Increases Installation Cost Larger Boreholes
- Difficult to Nest
- Barometric Correction
- Can be Easily Replaced

- Increases Response Times
- Increases Installation Cost Larger Boreholes
- NO Advantage

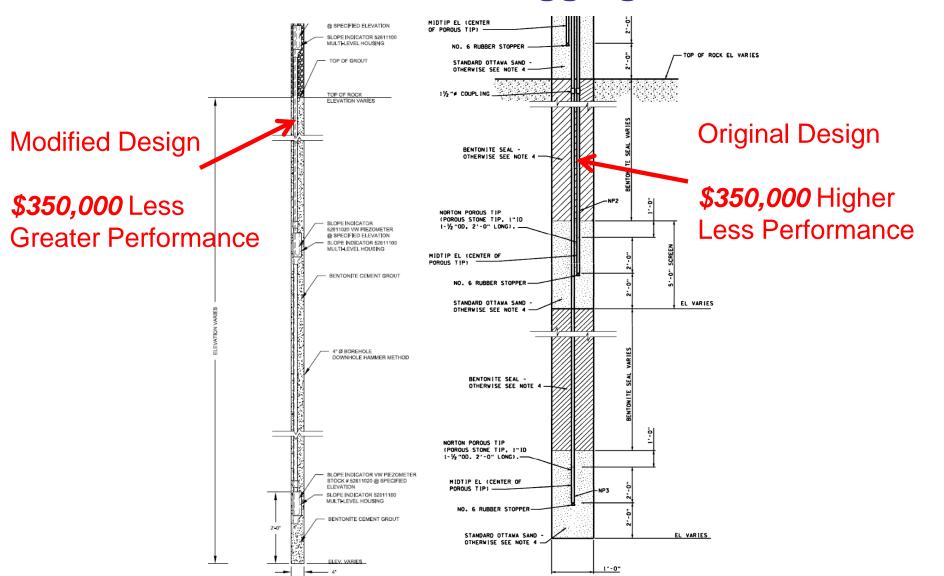
VW Install Methods – Cont.


Fully Grouted

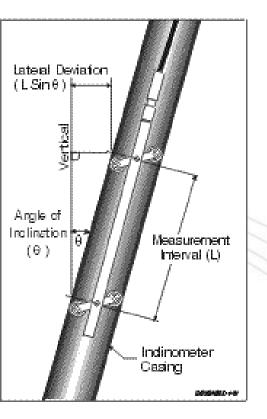

- Decreases Response Times
- Decreases Installation Cost Smaller Boreholes Rapid Installation
- Easily Nested
- Multi-Sensor Boreholes Reduces Cost
- Well Documented
- Can Not be Easily Replaced



The Proof of Fully Grouted



Project Specific Cost Savings 12 Nested Piezometers in Aggregate and Bedrock


Common Costly Msitakes for VW Piezometers

Sand Intake Zones - Don't Need Them
 Not Utilizing Multi-Sensor Boreholes
 Over-sizing boreholes
 Open standpipe construction

 Use only when necessary for recovery

Inclinometer Considerations

Casing Size and Type Installation Techniques Settlements Error Detection Transversing or In-place Multi-Sensor Installation

Casing Size and Types

Select a reputable vendor

- Follow manufacturer recommendations for casing types and connection types
- Casing Sizes Depend on Project Requirements
 Casing Sizes Depend on Project
 Specified Most
 Often
 - 1.90 inch ONLY for Structures
 - 2.75 inch Structures and Short Term
 - 3.34 inch Landslides and Long Term Monitoring IPIs

Should be 3.34" More Often

Installation Technique Specs

➢ Borehole

- Diameter enough for Tremie Pipe = 1" > Casing.
 Don't Oversize adds cost.
- Appropriate methods = Mud drilling specs don't work in rock.
- Relatively straight +/- 3 degrees
- Spiral Surveys Generally not needed, except for very deep installations

Counter Buoyancy

- NEVER hold casing down from the top
- Use internal weight Drill Rod, Anchor, or SAND?
- Stage Grouting

Settlement and Error Detection

- Utilize settlement detection systems in Compressible Soils
 - Spider Magnets
- At least 10 feet into stable ground
- Transversing Probes are not interchangable
 - 2 probes Specified on Same Project?
 - Calibration Casing Needed

Multi-Sensor Installation

- Don't Get Over Technical
- Tremendous Cost Savings
- Piezometer & Inclinometer
- Piezometer, Inclinometer, & Magnetic Extensometer

HOW TO SAVE \$125,000!!

WET SIDE

Data Acquisition

- Manual Readings
 - Non-continuous and can miss important details
 - Requires knowledgeable labor to read
- Data Acquisition Systems
 - Automated Readings
 - Fully Automated Reporting or Manual Download

Automated Data Acquisition Systems (ADAS)

Mini Loggers

- Self Contained
- Manual or Automated Reporting (Wireless)
- Typical Single Type Sensor Input
 - 1 to 16 Sensors
- Full Size Loggers
 - Larger Systems Mixed Sensor Types
 - Fully Programmable
 - Automated FTP upload or Web Based Monitoring

Some ADAS Product Examples

I don't promote any brand and there are more out there.

Data Acquisition Considerations

- ADAS Typically provides better data and cheaper monitoring cost for remote locations
- Web based or scheduled upload
 - Time Critical Data
 - User access
 - Alert Systems
 - What do you do with the data?
- Power Requirements
 - Solar or AC
- System Types
 - Many Systems and Components

Record for Worst Cut and Paste Specification

"Pour Clean Motor OIL in Annulus of Settlement Gauge" - Detail drawing note on public project.

Lots of Sensors and Systems

Pressure Cells

Strain Gauges

Settlement Systems

➤ Time Domain

Fiber Optics

Automated Total Stations

Technology Advancing Rapidly

- More efficient, more reliable
- Networking
- New Sensors
 - Fiber Optics
 - Shape Arrays
 - Automated Stations
- Turnkey Systems
 - Many companies with Pre-Package Solutions

Common Themes Observed in Current Specifications

Old Specs – Behind the Times
 Mixed and Matched Specs
 Incorrectly Specifying Methods
 Incomplete Understanding
 Over Specifying Materials

How to Avoid the "Bear"

- Limit use of Materials Specifications
 - Consult with Manufacturers and Consultants on the latest products and techniques
- Performance Specifications
 - Tell us "What you want the system to provide"
 - More likely to get pricing advantage
 - Can design/build
 - Prequalify engineers, installers, and consultants
 - Joint effort in preparing instrumentation plans.

Joint Instrumentation Monitoring Plan

& Contractor TBD	
June 2010	
A Good Ex Resident Engineer	ample
Manger	Date
Contractor Data Manager	Date

Note: This document is included in the specifications in draft format. Some names, web addresses, etc. have been generalized or intentionally left blank until the contract is awarded.

What makes it Good?

- Precisely describes system purpose and function
- Specifies data flow and personnel
- Specifies thresholds and safety chains
- Specifies performance of each instrument types and reading intervals
- Limits precise material specifications
 - Submittals utilized for approval of materials

Final Tips

Instrument with a GOAL !

- A goal determines the appropriate instruments and data acquisition methods
- Acquiring data for the sake of getting data is a bad practice.

≻Ask

If you are not sure of WHAT you can accomplish ask!

Thank You ! Questions?

If you would like a copy of this presentation please email or call me.

Scottie Barrentine, P.E. slbarrentine@terracon.com 423-298-4798